UUCMS. No.

\square

B.M.S COLLEGE FOR WOMEN, AUTONOMOUS
 BENGALURU - 560004
 SEMESTER END EXAMINATION - SEPT/OCT-2023

M.Sc in Mathematics - $\mathbf{2}^{\text {nd }}$ Semester

COMPLEX ANALYSIS

Course Code: MM202T

Duration: 3 Hours

QP Code: 12002
Max. Marks: 70

Instructions: 1) All questions carry equal marks.

2) Answer any five full questions.
1. (a)State and prove Cauchy's theorem for a disk.
(b) Evaluate (i) $\int_{C} \frac{e^{z}}{z(z-1)(z-2)} d z ; \quad C:|z|=1.5$ (ii) $\int_{C} \bar{z}^{2} d z ; \quad C:|z-1|=1$
(c) State and prove the Cauchy integral formula and use it to evaluate

$$
\begin{equation*}
\int_{C} \frac{\cos 2 \pi z}{(2 z-1)(z-3)} d z ; \quad C:|z|=1 \tag{5+5+4}
\end{equation*}
$$

2. (a) Let $f(z)$ be analytic in a region D of the complex plane and $f(z) \neq 0$ in D If a is a zero of $f(z)$ in D then there exist a positive integer ' n ' and an analytic function $g(z)$ on D such that $f(z)=(z-a)^{n} g(z)$ when $g(z) \neq 0$.
(b) State and prove Liuoville's theorem. Deduce the fundamental theorem of algebra.
3. (a) Find the radius of convergence of (i) $\sum_{n=1}^{\infty} \frac{n \sqrt{2}+i}{1+2 i n} z^{n} \quad$ (ii) $\sum_{n=1}^{\infty}(3+4 i) z^{n}$.
(b) State and prove Taylor's theorem.
(c) Let $f(z)=\sum_{n=1}^{\infty} a_{n}(z-a)^{n} \quad$ in $\{|z-a|<R\}$ where R is radius convergence of the power series. Then prove that the Taylor's expansion of $f(z)$ in the neighbourhood of a point a is exactly the given power series.
4. (a) Find the Laurent's expansion of $f(z)=1 / z\left(z^{2}-3 z+2\right)$ for the regions
(i) $0<|z|<1$, (ii) $1<|z|<2$.
(b) Let $f(z)$ be analytic function having as isolated singularity at $z=a$. If $|f(z)|$ is bounded in a neighbourhood $\{0<|z-a|<r\}$ then prove that $f(z)$ has a removable singularity at $z=a$.
(c) State and prove open mapping theorem.
5. Evaluate any three of the following (i) $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$ (ii) $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}$
(iii) $\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x\left(x^{2}-2 x+2\right)} d x$
(iv) $\int_{0}^{\infty} e^{-x^{2}} \cos (2 m x) d x=\sqrt{\frac{\pi}{2}} e^{-m^{2}}$.
6. (a) Let γ is a closed curve and $f(z)$ be meromorphic function defined inside and on the curve γ and $f(z)$ does not contain any zero's or pole's on γ. Let N be the number of zero's inside γ and let P be the number of poles of $f(z)$ inside γ.

Then $N-P=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{f(z)} d z$.
(b) Prove that all the roots of $z^{7}-5 z^{3}+12=0$ lie between the circle $|z|=1$ and $|z|=2$.
(c) State and prove Maximum modulus theorem.
$(5+4+5)$
7. (a) State and prove Riemann mapping theorem.
(b) Let $f(z)$ be an entire function and $f(z) \neq 0$. Let $k \geq 0$ be order of zeros of $f(z)$ at $z=0$. Let remaining of $f(z)$ be at $z_{1}, z_{2} \ldots$ where each z_{n} is repeated as often as it multiplicity. Then prove that $f(z)=e^{g(z)} z^{k} \prod_{n} E M_{n}\left(\frac{z}{z_{n}}\right)$.
8. (a) State and prove Mean value theorem
(b) State and prove Poisson Integral formula.

